Understanding AUTOSAR and its Applications in the Automotive Industry
Automotive trends like autonomous driving, v2x connectivity, OTA updates, predictive maintenance, and many other innovative features are based on in-vehicle software functions. For all these functions to work seamlessly and to cater to real-time in-vehicle functionalities, each ECU must work efficiently. Modern-day high-end vehicles have up to 100 ECUs, which communicate with each other via CAN bus, CAN FD, or Ethernet network to support complex vehicular functions.
Earlier, ECU software used by OEMs were on different platforms. There was no standard software architecture that was being used by tier 1 suppliers and their vendors to design the ECU software for OEMs. So, whenever any OEM wishes to switch to a new tier 1 supplier or vice-versa, the transition was very difficult. The new supplier used to face enormous challenges in understanding the existing software architecture, hardware platforms, and standards used in ECU software development. Thus, it was nearly impossible for a new supplier to drive an on-going project from the midst of its production life cycle.
To streamline the coordination between OEMs and tier 1 suppliers, to improve ECU software quality and reduce development time and costs, tier 1 automotive suppliers, semiconductor manufacturers, software suppliers, tool suppliers, and others came forward in 2003 and created a consortium called AUTomotive Open System ARchitecture (AUTOSAR).
Comments
Post a Comment